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A difference Hamiltonian operator involving two arbitrary constants is presented, and
it is used to construct a pair of nondegenerate Hamiltonian operators. The resulting
Hamiltonian pair yields two difference hereditary operators, and the associated positive
and negative hierarchies of nonlinear integrable lattice models are derived through the
bi-Hamiltonian formulation. Moreover, the two lattice hierarchies are proved to have dis-
crete zero curvature representations associated with a discrete spectral problem, which
also shows that the positive and negative hierarchies correspond to positive and negative
power expansions of Lax operators with respect to the spectral parameter, respectively.
The use of zero curvature equation leads us to conclude that all resulting integrable
lattice models are local and that the integrable lattice models in the positive hierarchy
are of polynomial type and the integrable lattice models in the negative hierarchy are
of rational type.

KEY WORDS: Integrable lattice model; Hamiltonian operator; bi-Hamiltonian
formulation; hereditary recursion operator; zero curvature representation.

1. INTRODUCTION

It almost becomes a curiosity to find new nonlinear integrable models due to
difficulty in the construction of integrable models. The related study will, how-
ever, provide clues for classifying integrable models. There are a few powerful
techniques for generating nonlinear continuous integrable models, for example,
Lax pair (Ablowitz and Clarkson, 1991; Das, 1989; Lax, 1968), recursion operator
(Ma, 1998; Olver, 1977; Zakharov and Konopelchenko, 1984), bi-Hamiltonian
formulation (Faddeev and Takhtajan, 1987; Magri, 1978; Tu, 1989), and R-matrix
approach (Blaszak, 1998). Many continuous nonlinear integrable models such as
the KdV and the KP equations have been systematically analyzed. There are also
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a couple of generalizations of the KdV equation presented recently (Antonowitz
and Fordy, 1987; G¨urses and Karasu, 1998; Ma, 1989; Ma and Pavlov, 1998).
Although the techniques mentioned above also work well for discrete integrable
models, there is not so much work done using the bi-Hamiltonian formulation to
search for nonlinear discrete integrable models. One of the reasons is that the exis-
tence of bi-Hamiltonian structures may be too strong for many models integrable in
other different senses. Nevertheless, the beauty hidden behind the bi-Hamiltonian
formulation still drives one to fish in the lake of bi-Hamiltonian models.

In this paper, we present a difference Hamiltonian operator containing two
arbitrary constants, and a pair of related nondegenerate Hamiltonian operators.
This Hamiltonian pair leads to two hereditary operators, and the associated posi-
tive and negative hierarchies of nonlinear integrable lattice models are constructed
by using the bi-Hamiltonian formulation. The resulting two hierarchies are all
bi-Hamiltonian, and thus possess infinitely many commuting symmetries and
infinitely many commuting conserved functionals. Moreover, both positive and
negative hierarchies are proved to have zero curvature representations associated
with a discrete spectral problem, which also shows that the positive and negative
hierarchies correspond to positive and negative power expansions of Lax operators
with respect to the spectral parameter, respectively. The use of zero curvature
equation leads us to conclude that all resulting integrable lattice models are local,
and that the positive hierarchy consists of integrable lattice models of polynomial
type and the negative hierarchy consists of integrable lattice models of rational
type. Finally, conclusions and some concluding remarks are given.

2. A HAMILTONIAN OPERATOR PAIR AND TWO LATTICE
INTEGRABLE HIERARCHIES

We first briefly introduce some notation in the Hamiltonian theory of lattice
models (see Oevelet al.(1989) and Ragnisco and Santini (1990) for more detailed
information). We assume thatu = (r, s)T , wherer = r (n, t) ands= s(n, t) are
real functions defined overZ × R. The shift operatorE, its inverse, and two
difference operatorsD and1 are defined as follows

(E f )(n) = f (n+ 1), (E−1 f )(n) = f (n− 1), n ∈ Z, (1a)

(D f )(n) = f (n+ 1)− f (n), (1 f )(n) = f (n+ 1)− f (n− 1), n ∈ Z, (1b)

where f is a lattice function, i.e., a function fromZ to R. As normal, we write
f (k) = Ek f, k ∈ Z. The variational derivative, the Gateaux derivative and the inner
product are defined by

δ H̃

δu
=
(
δ H̃

δr
,
δ H̃

δs

)T

,
δ H̃

δr
=
∑
m∈Z

E−m

(
∂H

∂r (m)

)
,
δ H̃

δs
=
∑
m∈Z

E−m

(
∂H

∂s(m)

)
, (2)
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J ′(u)[v] = ∂

∂ε
J(u+ εv)|ε=0, (3)

〈 f, g〉 =
∑
n∈Z

〈 f (n), g(n)〉. (4)

Here H̃ =∑n∈Z H (u(n)) is a functional;J is an operator,f , g, andv are two-
dimensional vector functions; and〈 f (n), g(n)〉 denotes the standard inner product
of f (n) andg(n) in the Euclidean spaceR2.

Denote byJ∗ the adjoint operator ofJ with respect to (4), and thus we have
〈 f, J∗g〉 = 〈J f, g〉. Obviously, the adjoint operator ofE is E−1. If an operatorJ
has the propertyJ = −J∗, thenJ is called to be skew-symmetric. The operator
1 = E − E−1 is skew-symmetric, and the inverse of1 will only be defined on
those lattice functions in the range of1 and produces no additive constant. For
example, if we havef = (E − 1)g and f |u=0 = 0, then we setg = (E − 1)−1 f .
In practice, this inverse can be explicitly realized (Ma and Fuchssteiner, 1999) as

1−1 = 1

2

( −1∑
k=−∞

E2k+1−
∞∑

k=0

E2k+1

)
. (5)

It is known that a linear operatorJ is Hamiltonian, if J is a skew-symmetric
operator satisfying the Jacobi identity, i.e., it satisfies that

〈 f, Jg〉 = −〈Jf, g〉,
〈J ′(u)[Jf ]g, h〉 + Cycle(f, g, h) = 0.

The associated Poisson bracket with a given Hamiltonian operatorJ is given by

{H̃1, H̃2}J =
〈
δ H̃1

δu
, J
δ H̃2

δu

〉
.

Now, motivated by the work of Ma and Zhou (1999), we introduce a specific 2× 2
matrix local difference operator:

J(u) = J(u;α, β)

=
(

−αrEr + αrE−1r −αrs+ αrE−1s+ βr − βrE−1

αsr− αsEr+ βEr− βr βrE−1− βEr

)
, (6)

whereu = (r, s)T as before, andα andβ are two arbitrary constants. The action of
J is taken as the left multiplication, and thus it is linear (Tu and Ma, 1990). Note
that J itself is nonlinear with respect to the dependent variableu = (r, s)T .

Theorem 2.1. The local difference matrix operator J defined by (6) is
Hamiltonian for all values of two constantsα andβ.
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Proof:

(i) A straightforward computation givesJ∗ = −J, and thusJ is a skew-
symmetric operator.

(ii) The proof of the Jacobi identity〈J ′(u)[Jf ]g, h〉 + Cycle(f, g, h) = 0 is
given in the Appendix.

Therefore,J is Hamiltonian whateverα andβ are. The proof of the theorem is
finished. ¤

Two specific cases of the constantsα andβ are interesting. The case ofα = 0
andβ = 1 leads to the Hamiltonian operator:

J1 =
(

0 r − rE−1

−r + Er rE−1− Er

)
, (7a)

and the other case ofα = 1 andβ = 0 leads to the Hamiltonian operator:

J2 =
(
−rEr + rE−1r −rs+ rE−1s

sr− sEr 0

)
. (7b)

By Theorem 1, the sum ofJ1 and J2 is also Hamiltonian, and thusJ1 and J2

constitute a pair of Hamiltonian operators.
Both of the two operatorsJ1 and J2 are nondegenerate. Namely, if there is

a 1× 2 matrix local difference operatorMi such thatMi Ji = 0, thenMi = 0,
wherei = 1 or i = 2. These are easy to prove. Let us look at the situation for
J1. Suppose that we haveM1 = (P, Q) such thatM1J1 = 0, whereP andQ are
two local difference operators. Then, we haveQ(−r + Er) = 0, which can lead to
Q = 0, and furtherP(r − rE−1) = 0, which will lead toP = 0. Therefore, we have
M1 = 0. This implies thatJ1 is nondegenerate. The proof for the nondegenerency
of J2 is completely similar and so we omit it. Actually, over some well-selected
spaces of vector lattice functions (e.g., we will see that we can have the space
spanned by the positive hierarchy forJ−1

1 and the space spanned by the negative
hierarchy forJ−1

2 ), the inverse operators of these two Hamiltonian operatorsJ1

andJ2 can be explicitly expressed as follows:

J−1
1 =

 (1− E−1)−1 1

r
+ 1

r
(E − 1)−1 1

r
(E − 1)−1

(1− E−1)−1 1

r
0

 , (8a)

and

J−1
2 =

 0 −1

r
(E − 1)−1 1

s

−1

s
(1− E−1)−1 1

r

1

s
(1+ E)(E − 1)−1 1

s

 , (8b)
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where (E − 1)−1 = (1+ E−1)1−1 and (1− E−1)−1 = (E + 1)1−1. Using
(5), the inverse operators (E − 1)−1 and (1− E−1)−1 can have the expre-
ssions:

(E − 1)−1 = (1+ E−1)1−1 = 1

2

( −1∑
k=−∞

Ek −
∞∑

k=0

Ek

)
, (9a)

(1− E−1)−1 = (E + 1)1−1 = 1

2

( −1∑
k=−∞

Ek+1−
∞∑

k=0

Ek+1

)
. (9b)

Let us now introduce

9 = J−1
1 J2, 9−1 = J−1

2 J1, (10)

whereJ1 and J2 and their inverses are defined by (7) and (8), respectively. Then
by the bi-Hamiltonian theory (Fuchssteiner and Fokas, 1981/82), their adjoint
operators

8 : =

9∗ =

−r (1+ E−1)− r [(E − E−1)r + (1− E−1)s](1− E−1)−1 1

r
−r (1+ E−1)

−s− s(E − 1)r (1− E−1)−1 1

r
−s


(11)

and

8−1 : =

(9−1)∗ =

 −r (1− E−1)
1

s
(1− E−1)−1 1

r
−(r E−1 − r )

1

s
(E + 1)(E − 1)−1 1

s

−(r E−1 − Er )
1

s
(1− E−1)−1 1

r
−1

s
+ (r E−1 − Er )

1

s
(E + 1)(E − 1)−1 1

s


(12)

are two hereditary operators. We will show that they yield two hierarchies of local
integrable lattice models, although they themselves are nonlocal operators.

On the other hand, we can have the following bi-Hamiltonian initial equalities:

J1
δ H̃1

δu
= J2

δ H̃0

δu
, J2

δG̃1

δu
= J1

δG̃0

δu
, (13)

more precisely,

δ H̃1

δu
= 9 δ H̃0

δu
,
δG̃1

δu
= 9−1 δG̃0

δu
,
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where four Hamiltonian functionals are given byH̃ i = 6n∈Z Hi (u(n)), G̃i = 6n∈Z

Gi (u(n)), 0≤ i ≤ 1, and

H0 = s+ r

2
+ r (1)

2
, (14a)

H1 = −1

4

(
2s2+ 4rs+ 4r (1)s+ 2r (1)r + rr (−1)+ r 2+ r (2)r (1)+ (r (1)

)2)
,

(14b)

G0 = 1

2
In r − In s, G1 = −1

s
− r

ss(−1)
. (15)

Now, we can introduce two hierarchies of nonlinear integrable lattice models as
follows:

utm = Xm := J19
m f0, f0 := δ H̃0

δu
= (1, 1)T , m≥ 0, (16)

and

utm = Ym := J29
−mg0, g0 := δG̃0

δu
=
(

1

2r
,
−1

s

)T

, m≥ 0. (17)

Obviously, we have the recursion structures

J19
m+1 f0 = J29

m f0, J29
−(m+1)g0 = J19

−mg0, m≥ 0.

Note thatJ1 and J2 form a Hamiltonian pair, both of which are nondegenerate;
and that f0,9 f0, g0, and9−1g0 are gradient. Then based on the bi-Hamiltonian
theory [especially on Lemma 7.25 (Olver, 1986)], all vector lattice functions9mf0

and9−mg0, m≥ 0, are gradient. Therefore, all lattice models withm≥ 1 in the
two hierarchies (16) and (17) possess the following bi-Hamiltonian structures

utm = Xm = J1
δ H̃m

δu
= J2

δ H̃m−1

δu
, m≥ 1, (18)

and

utm = Ym = J2
δG̃m

δu
= J1

δG̃m−1

δu
, m≥ 1, (19)

where the Hamiltonian functionals̃Hm andG̃m are given by

H̃m =
∑
n∈Z

Hm(u(n)), Hm :=
∫ 1

0
uT (9m f0)(µu) dµ, m≥ 0, (20)

and

G̃m =
∑
n∈Z

Gm(u(n)), Gm :=
∫ 1

0
uT (9−mg0)(µu) dµ, m≥ 0. (21)
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Two first nontrivial lattice models in the positive hierarchy (16) and the negative
hierarchy (17) read as

rt1 = r
(
s(−1)− s

)+ r
(
r (−1)− r (1)

)
, st1 = rs− r (1)s;

and

rt1 =
r

s(−1)
− r

s
, st1 =

r (1)

s(1)
− r

s(−1)
;

respectively. Note that these two lattice models are all local. The first one is poly-
nomial and the second one is rational inu and its shifts.

It is known that ifJ is a Hamiltonian operator, then[
J
δ H̃1

δu
, J
δ H̃2

δu

]
= J

δ{H̃1, H̃2}J
δu

,

where the commutator is defined by

[X, Y] := ∂

∂ε
(X(u+ εY)− Y(u+ εX))|ε=0.

Thus, for our two hierarchies of lattice models, we have

[Xm, X1] =
[

J1
δ H̃m

δu
, J1

δ H̃1

δu

]
= J1

δ{H̃m, H̃1}J1

δu
= 0, m, l ≥ 0,

and

[Ym, Y1] =
[

J2
δG̃m

δu
, J2

δG̃1

δu

]
= J2

δ{G̃m, G̃1}J2

δu
= 0, m, l ≥ 0,

where the commutativity of the Hamiltonian functionals is a consequence of the
recursion relation

δ H̃m+1

δu
= 9 δ H̃m

δu
,
δG̃m+1

δu
= 9−1 δG̃m

δu
, m≥ 0.

Therefore,{Xm}∞m=0 and{H̃m}∞m=0 are infinitely many commuting symmetries and
infinitely many commuting conserved functionals of the positive lattice
hierarchy (16), and{Ym}∞m=0 and{G̃m}∞m=0 are infinitely many commuting symme-
tries and infinitely many commuting conserved functionals of the negative lattice
hierarchy (17).

3. A DISCRETE SPECTRAL PROBLEM AND ZERO
CURVATURE REPRESENTATIONS

What we want to present now is zero curvature representations for the resulting
positive and negative lattice hierarchies (16) and (17), which will also show that
the positive and negative hierarchies correspond to positive and negative power
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expansions of Lax operators with respect to the spectral parameter, respectively.
The use of zero curvature equation leads us to conclude that all resulting integrable
lattice models are local, and that the positive hierarchy consists of integrable lattice
models of polynomial type and the negative hierarchy consists of integrable lattice
models of rational type.

To proceed, let us introduce the following discrete spectral problem

Eϕ = U (u, λ)ϕ, U (u, λ) =
0 1

r λ+ s

λ

 , ϕ =
(
ϕ1

ϕ2

)
, (22)

whereu = (r, s)T as before. This discrete spectral problem is equivalent to

(E − rE−1− λ−1s)ψ = λψ, ψ = Eϕ1.

To get the associated integrable lattice models, we first solve the stationary discrete
zero curvature equation

(E01)U −U01 = 0. (23)

Upon setting

01 =
(

a b

c −a

)
,

we find that Eq. (23) becomes

rb(1)− c = 0,(
a+ a(1)

)+ b(1)λ+ s

λ
b(1) = 0,

c(1)− rb− λ(a(1)− a
)− s

λ

(
a(1)− a

) = 0. (24)

The substitution of

a =
∞∑

m=0

amλ
−2m, b =

∞∑
m=0

bmλ
−2m+1, c =

∞∑
m=0

cmλ
−2m+1

into (24) leads to the initial relation:

b(1)
0 = 0, c0 = 0, a0− a(1)

0 = −c(1)
0 + rb0,

and the recursion relation:

rb(1)
m − cm = 0, m≥ 0,

b(1)
m+1+ sb(1)

m +
(
am + a(1)

m

) = 0, m≥ 0,(
a(1)

m+1− am+1
)+ s

(
a(1)

m − am
)+ rbm+1− c(1)

m+1 = 0, m≥ 0. (25)
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We choose the initial data satisfying the above initial relation

a0 = −1

2
, b0 = 0.

Then, the recursion relation (25) uniquely determines the lattice functionsam, bm,
cm; m≥ 1, and the first few lattice functions are given by

a1 = r, b1 = 1, c1 = r,

a2 = −r (1)r − rr (−1)− r 2− rs− rs(−1),

b2 = −r − r (−1)− s(−1), c2 = −rs− r 2− rr (1).

Moreover, from (23), we can know (Tu, 1990) that (E − 1)tr(0k
1) = 0 for allk ≥ 1.

In particular, we have tr(02
1) = 2(a2+ bc) is a constant, and let us sayγ1. Then,

we obtain a recursion relation foram:

am+1 =
m∑

i=1

ai am−i+1+
m+1∑
i=1

bi cm−i+2− 1

2
γ1, m≥ 1.

This relation, together with the first two recursion relations in (25), implies through
the mathematical induction that all lattice functionsam, bm, cm; m≥ 1, are lo-
cal, and they are just difference polynomials in the two dependent variables
r ands.

Now we define

Vm = (λ2m01)+ ≡


m∑

i=0

aiλ
2m−2i

m∑
i=0

biλ
2m−2i+1

m∑
i=0

ciλ
2m−2i+1 −

m∑
i=0

aiλ
2m−2i

 , m≥ 0, (26)

and then we can obtain

E(Vm)U − UVm =

 0 −b(1)
m+1

cm+1
−s
(
a(1)

m − am
)

λ

 .
To present the associated hierarchy of lattice models, we take a modification

1m =
(

bm+1 0

0 0

)
,
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and define the auxiliary Lax operators

V [m] = Vm +1m, m≥ 0. (27)

Through a direct calculation, we can have

(
EV[m]

)
U − UV[m] =

 0 0

cm+1− rbm+1
−s
(
a(1)

m − am
)

λ

 .
which is consistent withUtm. Then for all m≥ 0, we introduce the following
auxiliary spectral problems associated with the spectral problem (22):

ϕtm = V [m]ϕ, m≥ 0. (28)

The compatibility conditions of Eqs. (22) and (28) are

Utm =
(
EV[m]

)
U − UV[m] , m≥ 0, (29)

which give rise to the following hierarchy of lattice models

rtm = cm+1− rbm+1, m≥ 0, (30a)

stm = −s
(
a(1)

m − am
)
, m≥ 0. (30b)

These models can be rewritten as

utm =
(

r

s

)
tm

= J1


am+1

r
cm+1

r

 , m≥ 0, (31)

whereJ1 is defined by (7a). Obviously, it follows from the recursion relation for
the lattice functionsam, bm, andcm that the following recursion relation

am+1

r
cm+1

r

 = 9


am

r
cm

r

 , m≥ 1

holds. Therefore, we have

J1


am+1

r
cm+1

r

 = J19
m


a1

r
c1

r

 = J19
m f0 = Xm, m≥ 0.

and so the lattice models (31) are just the positive lattice hierarchy (16). This
implies that the positive lattice hierarchy (16) is local and it has the discrete zero
curvature representations (29). Moreover, the Lax operatorsV [m] of the positive
hierarchy (16) only have positive powers of the spectral parameterλ.
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In order to present the discrete zero curvature representations for the negative
lattice hierarchy (17), we consider the stationary discrete zero curvature equation

(E02)U −U02 = 0, (32)

where02 =
(

A B
C −A

)
with A, B, andC being chosen as

A =
∞∑

m=0

Amλ
2m, B =

∞∑
m=0

Bmλ
2m−1, C =

∞∑
m=0

Cmλ
2m−1.

Similarly, from (32), we can have the initial relation

B(1)
0 = 0, C0 = 0, A(1)

0 − A0 = 0,

and the recursion relation:

r B(1)
m − Cm = 0, m≥ 0,

sB(1)
m+1+ B(1)

m +
(
Am + A(1)

m

) = 0, m≥ 0,

s
(
A(1)

m+1− Am+1
)+ (A(1)

m − Am
)+ rBm+1− C(1)

m+1 = 0, m≥ 0. (33)

We choose the initial data satisfying the above initial relation:

A0 = −1

2
, B0 = 0.

Then, the stationary discrete zero curvature equation (32) has a unique solution02

determined by (33). For example, we have

A1 = r

ss(−1)
, B1 = 1

s(−1)
, C1 = r

s
,

A2 = − rr (1)

s2s(1)s(−1)
− rr (−1)

s
(
s(−1)

)2
s(−2)

− r 2

s2
(
s(−1)

)2 − r

s2s(−1)
− r

s
(
s(−1)

)2 ,

B2 = − 1

ss(−1)
− r

s
(
s(−1)

)2 − r (−1)(
s(−1)

)2
s(−2)

,

C2 = − r

s2
− r 2

s2s(−1)
− rr (1)

s2s(1)
.

Similarly, from (32), we can know (Tu, 1990) that (E − 1)tr(0k
2) = 0 for allk ≥ 1.

In particular, this tells us that tr(02
2) = 2(A2+ BC) is a constant, and let us say

γ2. Then, we obtain a recursion relation forAm:

Am+1 =
m∑

i=1

Ai Am−i+1+
m+1∑
i=1

Bi Bm−i+2− 1

2
γ2, m≥ 1.
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This relation, together with the first two recursion relations in (33), implies through
the mathematical induction that all lattice functionsAm, Bm, Cm; m≥ 1, are lo-
cal, and they are just difference rational functions in the two dependent variables
r ands.

Upon defining

Wm = (λ−2m02)− ≡


m∑

i=0

Aiλ
−2m+2i

m∑
i=0

Biλ
−2m+2i−1

m∑
i=0

Ciλ
−2m+2i−1 −

m∑
i=0

Aiλ
−2m+2i

 , m≥ 0, (34)

we can have

E(Wm)U − UWm =
(

0 −sB(1)
m+1

sCm+1 −
(
A(1)

m − Am
)
λ

)
.

To present the associated hierarchy of lattice models, we choose a modification

2m =
(

S(−1)Bm+1+ A(−1)
m 0

0 Am

)
,

and introduce

W[m] = Wm +2m, m≥ 0. (35)

A direct computation leads to(
EW[m]

)
U − UW[m]

=
 0 0

sCm+1+ rA(1)
m − rs(−1)Bm+1− rA(−1)

m

s
(
A(1)

m − Am
)

λ

 ,

which is consistent withUtm. Then for allm≥ 0, we further introduce the following
auxiliary spectral problems associated with the spectral problem (22):

ϕtm = W[m]ϕ, m≥ 0. (36)

Obviously, the compatibility conditions of Eqs. (22) and (36) read as

Utm =
(
EW[m]

)
U − UW[m] , m≥ 0, (37)

which give rise to the following hierarchy of lattice models

rtm = sCm+1+ rA(1)
m − rs(−1)Bm+1− rA(−1)

m = −Cm + rBm, m≥ 0, (38a)

stm = s
(
A(1)

m − Am
) = −(A(1)

m−1− Am−1
)− rBm + C(1)

m , m≥ 0. (38b)
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These models (38) can be rewritten as

utm =
(

r

s

)
tm

= J2

 −
Am

r

−Cm+1

r

 , m≥ 0, (39)

whereJ2 is defined by (7b). Similarly, we can have the recursion relation −
Am

r

−Cm+1

r

 = 9−1

−
Am−1

r

−Cm

r

 , m≥ 1,

which leads to

J2

 −
Am

r

−Cm+1

r

 = J29
−m

−
A0

r

−C1

r

 = J29
−mg0 = Ym, m≥ 0,

and so the lattice models (39) are just the negative lattice hierarchy (17). This
implies that the negative lattice hierarchy (17) is local and it has the discrete zero
curvature representations (37). Moreover, the Lax operatorsW[m] of the negative
hierarchy only have negative powers of the spectral parameterλ.

4. CONCLUSIONS AND REMARKS

Two hierarchies of nonlinear bi-Hamiltonian integrable lattice models have
been constructed from a difference Hamiltonian operator involving two arbitrary
constants. All lattice models in the resulting positive and negative hierarchies have
been proved to be local and to possess infinitely many commuting symmetries and
infinitely many commuting conserved functionals, which indicates that they are
all integrable in the Liouville sense (Tu, 1990). Two examples among the resulting
integrable models are

rt1 = r
(
s(−1)− s

)+ r
(
r (−1)− r (1)

)
, st1 = rs− r (1)s;

and

rt1 =
r

s(−1)
− r

s
, st1 =

r (1)

s(1)
− r

s(−1)
.

The first one is from the positive hierarchy; and the second one, from the negative
hierarchy. Moreover, a kind of zero curvature representations associated with the
discrete spectral problem (22) has been proposed for the two lattice hierarchies.
This also provides evidence for integrability of the resulting lattice models by
the inverse scattering transfom. The Lax operators for the positive and negative
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hierarchies (16) and (17) correspond to the positive and negative power expansions
with respect to the spectral parameter, respectively. It has also been shown that the
integrable lattice models in the positive hierarchy are of polynomial type and the
integrable lattice models in the negative hierarchy are of rational type.

Compared with the Ablowitz-Ladik hierarchy (say, see Zeng and Rauch-
Wojciechowski, 1995) and the Toda hierarchy (say, see Ma and Fuchssteiner,
1999), the complexity of the lattice hierarchies (16) and (17) should lie between
their complexities. Like the Ablowitz-Ladik hierarchy, the discrete spectral prob-
lem for (16) and (17) involves the positive and negative powers of the spectral
parameter simultaneously, which leads to the existence of two lattice soliton hi-
erarchies. But the lattice hierarchies (16) and (17) have simple bi-Hamiltonian
structures like the Toda hierarchy. The Ablowitz-Ladik hierarchy has the higher-
degree nonlinearity in the second Hamiltonian operator (see Zeng and Rauch-
Wojciechowski, 1995), whose bi-Hamiltonian property seems not to have strictly
proved yet.

Other integrable properties of the lattice hierarchies (16) and (17) are in-
teresting as well. Are there any B¨acklund transformation and soliton solutions?
What are master symmetries andπ -functions? It is particularly interesting to find
soliton, positon, negaton, and complexiton solutions to the above two typical in-
tegrable models. The resulting Hamiltonian operator (6) may also contain other
hierarchies of integrable lattice models. The arbitrariness of two constants brings
choices to present integrable lattice models. The higher-order matrix generaliza-
tion of the Hamiltonian operator (6) and the combination of the Hamiltonian
operator (6) with constant coefficient matrix operators must be good candidates
which lead to different Hamiltonian pairs in constructing integrable lattice mod-
els (see Tu and Ma, 1992, and Ma, 1990, for examples in the continuous case).
We hope that there will be answers to these questions and we love to have more
fishes.
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APPENDIX. THE PROOF OF THE JACOBI IDENTITY

We would like to give a concrete checking of the Jacobi identity

〈J ′(u)[Jf]g, h〉 + Cycle(f, g, h) = 0

for the Hamiltonian operator defined by (6). Assume that

f = ( f1(n, t), f2(n, t))T, g = (g1(n, t), g2(n, t))T, h = (h1(n, t), h2(n, t))T
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are three arbitrary functions, which are required to be rapidly vanishing at the infin-
ity. We combine terms on the left side of the Jacobi identity, i.e., in〈J ′(u)[Jf]g, h〉 +
Cycle(f, g, h), containingα2, β2, andαβ, respectively. Through a laborious but
straightforward computation, we can find that the coefficients ofα2, β2, andαβ
read as∑

n∈Z

[r f2g2h1− r (E−1 f2)g2h1− r f2(E−1g2)h1+ r (E−1 f2)(E−1g2)h1

− r f2g1h2+ (Er )(E f2)(Eg1)h2+ r (E−1 f2)g1h2− (Er ) f2(Eg1)h2

+ r f2(E−1g2)h2− r (E−1 f2)(E−1g2)h2− (Er )(E f2)(Eg2)h2

+ (Er ) f2(Eg2)h2](n)+ Cycle(f, g, h),∑
n∈Z

[(r (Er )2(E f1)(Eg1)(Eh1)− r (E−1r )(Er )(E−1 f1)(Eg1)(Eh1)

+ r (Er )s f2(Eg1)(Eh1)− r (Er )(E−1s)(E−1 f2)(Eg1)(Eh1)

+ r (Er )(E2r )(E2 f1)(Eg1)(Eh1)+ r (Er )(Es)(E f2)(Eg1)(Eh1)

− r 2(Er ) f1(Eg1)(Eh1)− r (Er )s f2(Eg1)(Eh1)− r 2(E−1r ) f1(E−1g1)

× (E−1h1)+ r (E−1r )(E−2r )(E−2 f1)(E−1g1)(E−1h1)

− r (E−1r )(E−1s)(E−1 f2)(E−1g1)(E−1h1)+ r (E−1r )(E−2s)(E−2 f2)

× (E−1g1)(E−1h1)− r (Er )(E−1r )(E f1)(E−1g1)(E−1h1)+ r (E−1r )2

× (E−1 f1)(E−1g1)(E−1h1)− r (E−1r )s f2(E−1g1)(E−1h1)+ r (E−1r )(E−1s)

× (E−1 f2)(E−1g1)(E−1h1)− r 2s f1g2h1+ r (Er )s(E f1)g2h1

+ r (Er )s(E f1)g2h1− r (E−1r )s(E−1 f1)g2h1+ rs2 f2g2h1

− rs(E−1s)(E−1 f2)g2h1− r (Er )(E−1s)(E f1)(E−1g2)(E−1h1)

+ r (E−1r )(E−1s)(E−1 f1)(E−1g2)(E−1h1)− rs(E−1s) f2(E−1g2)(E−1h1)

+ r (E−1s)2(E−1 f2)(E−1g2)(E−1h1)+ r (E−1r )(E−1s)(E−1 f1)

× (E−1g2)(E−1h1)− r 2(E−1s) f1(E−1g2)(E−1h1)− r (Er )s(E f1)g1h2

+ r (E−1r )s(E−1 f1)g1h2− rs2 f2g1h2+ rs(E−1s)(E−1 f2)g1h2+ r 2s f1g1h2

− r (Er )s(E f1)g1h2+ (Er )(E2r )s(E2 f1)(Eg1)(Eh2)− r (Er )s f1(Eg1)(Eh2)

+ (Er )s(Es)(E f2)(Eg1)(Eh2)− (Er )s2 f2(Eg1)(Eh2)

− r (Er )s f1(Eg1)(Eh2)+ (Er )2s(E f1)(Eg1)(Eh2)](n)+ Cycle (f, g, h),
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and∑
n∈Z

[r (Er )(E−1 f2)(Eg1)h1− r (Er ) f2(Eg1)h1− r (Er )(E f2)(Eg1)h1

+ r (Er ) f2(Eg1)h1+ r (E−1r ) f2(E−1g1)h1− r (E−1r )(E−1 f2)(E−1g1)h1

− r (E−1r )(E−1 f2)(E−1g1)h1− r (E−1r )(E−2 f2)(E−1g1)h1

− r (Er )(E f1)g2h1+ r (E−1r )(E−1 f1)g2h1− rs f2g2h1

+ r (E−1s)(E−1 f2)g2h1− rs f2g2h1+ rs(E−1 f2)g2h1+ r 2 f1g2h1

− r (Er )(E f1)g2h1− r 2(E−1 f2)g2h1+ r (Er )(E f2)g2h1

+ r (Er )(E f1)(E−1g2)h1+ rs f2(E−1g2)h1− r (E−1r )(E−1 f1)(E−1g2)h1

− r (E−1s)(E−1 f2)(E−1g2)h1+ r (E−1s) f2(E−1g2)h1− r (E−1s)

× (E−1 f2)(E−1g2)h1− r (E−1r )(E−1 f1)(E−1g2)h1+ r 2 f1(E−1g2)h1

+ r (E−1r )(E−2 f2)(E−1g2)h1− r 2 f2(E−1g2)h1+ r (Er )(E f1)g1h2

− r (E−1r )(E−1 f1)g1h2+ rs f2g1h2− r (E−1s)(E−1 f2)g1h2+ rs f2g1h2

− rs(E−1 f2)g1h2− r 2 f1g1h2+ r (Er )(E f1)g1h2+ r 2(E−1 f2)g1h2

− r (Er )(E f2)g1h2− (Er )(Er )2(E2 f1)(Eg1)h2+ r (Er ) f1(Eg1)h2

− (Er )(Es)(E f2)(Eg1)h2+ (Er )s f2(Eg1)h2− (Er )s(E f2)(Eg1)h2

+ (Er )s f2(Eg1)h2+ r (Er ) f1(Eg1)h2− (Er )2(E f1)(Eg1)h2

− r (Er )(E−1 f2)(Eg1)h2+ (Er )2(E f2)(Eg1)h2− r (Er )(E f1)(E−1g2)h2

+ r (E−1r )(E−1 f1)(E−1g2)h2− rs f2(E−1g2)h2

+ r (E−1s)(E−1 f2)(E−1g2)h2+ (Er )(E2r )(E2 f1)(Eg2)h2

− r (Er ) f1(Eg2)h2+ (Er )(Es)(E f2)(Eg2)h2− (Er )s f2(Eg2)h2](n)

+Cycle (f, g, h),

respectively. By a careful checking, we see that these three sums are all equal to
zero. Therefore, the Jacobi identity for the Hamiltonian operator (6) holds.
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