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Positive and Negative Hierarchies of Integrable
Lattice Models Associated With a Hamiltonian Pair
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A difference Hamiltonian operator involving two arbitrary constants is presented, and

it is used to construct a pair of nondegenerate Hamiltonian operators. The resulting
Hamiltonian pair yields two difference hereditary operators, and the associated positive
and negative hierarchies of nonlinear integrable lattice models are derived through the
bi-Hamiltonian formulation. Moreover, the two lattice hierarchies are proved to have dis-
crete zero curvature representations associated with a discrete spectral problem, which
also shows that the positive and negative hierarchies correspond to positive and negative
power expansions of Lax operators with respect to the spectral parameter, respectively.
The use of zero curvature equation leads us to conclude that all resulting integrable
lattice models are local and that the integrable lattice models in the positive hierarchy
are of polynomial type and the integrable lattice models in the negative hierarchy are
of rational type.

KEY WORDS: Integrable lattice model; Hamiltonian operator; bi-Hamiltonian
formulation; hereditary recursion operator; zero curvature representation.

1. INTRODUCTION

It almost becomes a curiosity to find new nonlinear integrable models due to
difficulty in the construction of integrable models. The related study will, how-
ever, provide clues for classifying integrable models. There are a few powerful
techniques for generating nonlinear continuous integrable models, for example,
Lax pair (Ablowitz and Clarkson, 1991; Das, 1989; Lax, 1968), recursion operator
(Ma, 1998; Olver, 1977; Zakharov and Konopelchenko, 1984), bi-Hamiltonian
formulation (Faddeev and Takhtajan, 1987; Magri, 1978; Tu, 1989), and R-matrix
approach (Blaszak, 1998). Many continuous nonlinear integrable models such as
the KdV and the KP equations have been systematically analyzed. There are also
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a couple of generalizations of the KdV equation presented recently (Antonowitz
and Fordy, 1987; Grses and Karasu, 1998; Ma, 1989; Ma and Pavlov, 1998).
Although the techniques mentioned above also work well for discrete integrable
models, there is not so much work done using the bi-Hamiltonian formulation to
search for nonlinear discrete integrable models. One of the reasons is that the exis-
tence of bi-Hamiltonian structures may be too strong for many models integrable in
other different senses. Nevertheless, the beauty hidden behind the bi-Hamiltonian
formulation still drives one to fish in the lake of bi-Hamiltonian models.

In this paper, we present a difference Hamiltonian operator containing two
arbitrary constants, and a pair of related nondegenerate Hamiltonian operators.
This Hamiltonian pair leads to two hereditary operators, and the associated posi-
tive and negative hierarchies of nonlinear integrable lattice models are constructed
by using the bi-Hamiltonian formulation. The resulting two hierarchies are all
bi-Hamiltonian, and thus possess infinitely many commuting symmetries and
infinitely many commuting conserved functionals. Moreover, both positive and
negative hierarchies are proved to have zero curvature representations associated
with a discrete spectral problem, which also shows that the positive and negative
hierarchies correspond to positive and negative power expansions of Lax operators
with respect to the spectral parameter, respectively. The use of zero curvature
equation leads us to conclude that all resulting integrable lattice models are local,
and that the positive hierarchy consists of integrable lattice models of polynomial
type and the negative hierarchy consists of integrable lattice models of rational
type. Finally, conclusions and some concluding remarks are given.

2. AHAMILTONIAN OPERATOR PAIR AND TWO LATTICE
INTEGRABLE HIERARCHIES

We first briefly introduce some notation in the Hamiltonian theory of lattice
models (see Oevet al.(1989) and Ragnisco and Santini (1990) for more detailed
information). We assume that= (r, s)", wherer =r(n, t) ands = s(n, t) are
real functions defined oveZ x R. The shift operatoiE, its inverse, and two
difference operator® and A are defined as follows

(EHM) = f(h+1), EH)n)=f(h—1), neZ, (1)
(DH() = f(n+1)— f(n), (AH)(N)=f(n+1)— f(n—1), neZ, (ib)

where f is a lattice function, i.e., a function frord to R. As normal, we write
f& = EXf, k € Z. The variational derivative, the Gateaux derivative and the inner
product are defined by

%Z(S;'ﬁ> ’ﬁ 2 E <8r(m)>’_ 2 E (83("‘)) @

meZ meZ
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YW = -3+ )l 3)
(f,0) = S (F(), g(n)). (4)
neZ

HereH = Y nez H(u(n)) is a functional;J is an operatorf, g, andv are two-
dimensional vector functions; arid (n), g(n)) denotes the standard inner product
of f(n) andg(n) in the Euclidean spacg?.

Denote byJ* the adjoint operator od with respect to (4), and thus we have
(f, J*g) = (Jf, g). Obviously, the adjoint operator & is E~1. If an operator]
has the property = —J*, thenJ is called to be skew-symmetric. The operator
A = E — Eis skew-symmetric, and the inverse afwill only be defined on
those lattice functions in the range afand produces no additive constant. For
example, if we haveéf = (E — 1)g and f |y—o = 0, then we se) = (E — 1) f.
In practice, this inverse can be explicitly realized (Ma and Fuchssteiner, 1999) as

_ 1 -1 o0
k=—o00 k=0

It is known that a linear operata¥ is Hamiltonian, if J is a skew-symmetric
operator satisfying the Jacobi identity, i.e., it satisfies that

<f1 Jg) = _<Jf1 g)1
(J'(u[Jf]g, h) + Cycle(f, g, h) = 0.
The associated Poisson bracket with a given Hamiltonian opedasogiven by
§Hy _8H,
su’' su
Now, motivated by the work of Ma and Zhou (1999), we introduce a specii@2
matrix local difference operator:

J(u) = J(U; @, B)
—afEr +arE™r  —ars+arE"'s+ gr — Bre?t ©)
asr — asSEr+4 BEr — gr BrE~1 — BEr ’

{Hy, H2}, =<

whereu = (r, s)" as before, and andg are two arbitrary constants. The action of
J is taken as the left multiplication, and thus it is linear (Tu and Ma, 1990). Note
that J itself is nonlinear with respect to the dependent variabie (r, s)".

Theorem 2.1. The local difference matrix operator J defined by (6) is
Hamiltonian for all values of two constandsand 5.
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Proof:

(i) A straightforward computation give$* = —J, and thusJ is a skew-
symmetric operator.

(ii) The proof of the Jacobi identityd’(u)[Jf]g, h) + Cycle(f, g, h) =0 is
given in the Appendix.

Therefore,J is Hamiltonian whateves# and 8 are. The proof of the theorem is
finished. O

Two specific cases of the constaatandg are interesting. The case®@f= 0
andB = 1 leads to the Hamiltonian operator:

3 0 r —re-1 (72)
e R N Y

and the other case af = 1 andg = 0 leads to the Hamiltonian operator:

-1 -1
5o ( rEr + rE-r  —rs+rE s>. (7b)
sr— skEr 0

By Theorem 1, the sum od; and J, is also Hamiltonian, and thud;, and J,
constitute a pair of Hamiltonian operators.

Both of the two operators; and J, are nondegenerate. Namely, if there is
a 1x 2 matrix local difference operatdyl; such thatM; J = 0, thenM; = 0,
wherei =1 ori = 2. These are easy to prove. Let us look at the situation for
J;. Suppose that we hawd; = (P, Q) such thatM; J; = 0, whereP andQ are
two local difference operators. Then, we h&e-r + Er) = 0, which can lead to
Q = 0,andfurtheP(r — rE~1) = 0, whichwilllead toP = 0. Therefore, we have
M1 = 0. This implies that); is nondegenerate. The proof for the nondegenerency
of J, is completely similar and so we omit it. Actually, over some well-selected
spaces of vector lattice functions (e.g., we will see that we can have the space
spanned by the positive hierarchy fﬂifl and the space spanned by the negative
hierarchy forJ, 1, the inverse operators of these two Hamiltonian operalprs
and J, can be explicitly expressed as follows:

(1- E*l)*lr} + %(E -1t %(E — 1)t

3t , (8a)
—1y-1d
@-EH 0

and

0 —%(E — 1)—12
: (8b)

1 1 1 11
—g(l—E ) . §(1+ E)E -1) s
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where E-1)*=1+EHATt and (1-EHt=(E+ 1AL Using
(5), the inverse operatorsE(— 1)t and (1— E~1)~! can have the expre-
ssions:

-1 0
(E-1)'=@Q+EHat= % < dEK- Ek> , (%)
k=0

k=—o00
1 -1 o0
QA-EHIT=(E+1A1t= > ( dOEM-M Ek+l) . (9b)
k=—00 k=0
Let us now introduce
v=J01% vl= 31, (10)

where J; and J, and their inverses are defined by (7) and (8), respectively. Then
by the bi-Hamiltonian theory (Fuchssteiner and Fokas, 1981/82), their adjoint
operators

o=
—TA+EYH—r(E-EYHr +@1-EYHs|(1 - E‘l)‘lr} —rl+E™
U =
—s—s(E—-1r@— E’l)’li—L -s
(11)

and

li=
oy —r(l- E*1)2(1 - E*l)*lrl —(rE~— r)%(E +1)(E - 1)*12

1

1 1 1 1
—CET—ENZQ-EHZ _Z4H@CET-—EnN=(E+1)(E-1)1=
( )S( ) . S+( )s( + 1)( ) s

12)
are two hereditary operators. We will show that they yield two hierarchies of local

integrable lattice models, although they themselves are nonlocal operators.
Onthe other hand, we can have the following bi-Hamiltonian initial equalities:

sH1 sHo . 866G, §Go
h—=—, — =) —, 13
l(Su 28u Zau lau (13)

more precisely,
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where four Hamiltonian functionals are givenﬁy = Yhez Hi(u(n)), G = Yhez
Gi(u(n)),0<i<1,and
roor®

Ho=s+ -+ —, l4a
0=S+3+ (14a)
1

Hy = —‘—1(252 +ars+ 4rDs 4 2rDr 4D 4 p2 4 r@r® 4 (r0)?),
(14b)

1 r

s s$U°

Now, we can introduce two hierarchies of nonlinear integrable lattice models as

follows:

1
Gozilnr—lns, Gi=— (15)

8Ho

Uy, = Xm = WM fy,  foi= T (1,1)", m=>0, (16)
and
§Go 1 —1\"
U = Yy = LW Mgy, =—=|—,—1] , m>0. 17
tm m 2 Jo, o 30 (Zr s ) = a7

Obviously, we have the recursion structures
U™ g = HLwMfy, Lw ™Dgy = 3w Mgy, m> 0.

Note thatJ; and J, form a Hamiltonian pair, both of which are nondegenerate;
and thatfq, ¥ fo, go, andW g, are gradient. Then based on the bi-Hamiltonian
theory [especially on Lemma 7.25 (Olver, 1986)], all vector lattice functibfif
and¥~Mgg, m > 0, are gradient. Therefore, all lattice models with> 1 in the
two hierarchies (16) and (17) possess the following bi-Hamiltonian structures

5H~m 8|:|m7]_
U = X = \] == ’ m > 1! 18
fm ™= 15 275U = (18)
and
§Gm 8Gm_1
U =Yn=b— = , m>1, 19
tm m 2 U 1 U = (19)

where the Hamiltonian functional3,, andG,, are given by

1
Fin= 3 Hou(), Ho o= [ 7@ ) di, m= 0, (20)

neZ

and

1
Gn = 3 Gnu(m), Gn = fo T g (ut) e, M= 0. (21)
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Two first nontrivial lattice models in the positive hierarchy (16) and the negative
hierarchy (17) read as

ry, =r(s"—s)+r(r —r®), s =rs—r0s;
and
. r r _ r(l) r .
WIS Ty 2T S

respectively. Note that these two lattice models are all local. The first one is poly-
nomial and the second one is rationaliand its shifts.
It is known that ifJ is a Hamiltonian operator, then

[ SH1 8H~2i|:‘]8{|:|11|:|2}J

r

su
where the commutator is defined by
0
[X,Y]:= B—S(X(u +eY) = YU+ eX))|s=o.

Thus, for our two hierarchies of lattice models, we have

SHm . 8H; 8{Hm, 1}y,
Xm Xl = | h—2, —— | = — =2 0, m,| >0,
[ m 1] [ 1 su 1 (3Ui| 1 su
and
§G G 8{Gm, G
N Vil = | 28m 3,981 | _ 3, 08m Cals _ gy s
su su su

where the commutativity of the Hamiltonian functionals is a consequence of the
recursion relation

SHms1 _ qJSHm 3Gm1 _ \Il’l(SGm, m= 0.

su su su su

Therefore{ Xm}5_, and{ H mlm_o are infinitely many commuting symmetries and
infinitely many commuting conserved functionals of the positive lattice
hierarchy (16), an@Ym}%_, and{Gm}s_, are infinitely many commuting symme-
tries and infinitely many commuting conserved functionals of the negative lattice
hierarchy (17).

3. ADISCRETE SPECTRAL PROBLEM AND ZERO
CURVATURE REPRESENTATIONS

What we wantto present now is zero curvature representations for the resulting
positive and negative lattice hierarchies (16) and (17), which will also show that
the positive and negative hierarchies correspond to positive and negative power
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expansions of Lax operators with respect to the spectral parameter, respectively.
The use of zero curvature equation leads us to conclude that all resulting integrable
lattice models are local, and that the positive hierarchy consists of integrable lattice
models of polynomial type and the negative hierarchy consists of integrable lattice
models of rational type.

To proceed, let us introduce the following discrete spectral problem

0 1 o1
Eo =U(u, e, U(u,A)= s|, o= ), (22)
r x+-— @2
A
whereu = (r, s)" as before. This discrete spectral problem is equivalent to
(E—rEt—Ats)y =1y, ¢ =Egs.

To get the associated integrable lattice models, we first solve the stationary discrete
zero curvature equation

(ET)U —UTI; =0. (23)
Upon setting

we find that Eq. (23) becomes
rb® — ¢ =0,
(a+a®) + bW + éb(l) =0,

c®—rb—a(a®—a) - ;(a(l) -a) =0 (24)

The substitution of

00 00 o0
a= Z am)h—Zm, b — Z bm)\‘—2m+1, Cc= Z CmX—Zm-&-l
m=0 m=0 m=0

into (24) leads to the initial relation:
by’ =0, co=0, a —a’=—c§’ +rby,
and the recursion relation:
rb —cp, =0, m=>0,
b, +sHY + (an +al) =0, m=0,

@0, — am1) +s@® —am) +rbpis — ¢, =0, m=0.  (25)
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We choose the initial data satisfying the above initial relation
1
=—=, bp=0.
=l 5 o

Then, the recursion relation (25) uniquely determines the lattice fundaijgrsn,
cm; M > 1, and the first few lattice functions are given by

a=r b =1 c=r,
ay=—rOr — D _r2 _yg_rstD),
by=—r—rY D = —rs—r2—pr®,

Moreover, from (23), we can know (Tu, 1990) th&t ¢ 1)tr(1“'1‘) = Oforallk > 1.
In particular, we have tf?) = 2(a2 + bc) is a constant, and let us sgy. Then,
we obtain a recursion relation fag,:

amt1 =

m m+1
i=1 i=

1
8dm-i+1 + biCm—it2 — E)/l, m> 1
-1

This relation, together with the first two recursion relations in (25), implies through
the mathematical induction that all lattice functioas, by, cm; m > 1, are lo-
cal, and they are just difference polynomials in the two dependent variables
r ands.

Now we define

Z a AZm—Zl Z bi )LZm—ZH-l
V= (32T, = | 7° =0 ., m>0, (26)

m m
Z G )L2m—2i+1 _ Z a )\2m—2i
i=0 i=0

and then we can obtain

1
0 -bi,
E(Vm)U — UV, = —s(a,(T}) — an)
Cm+1 —

To present the associated hierarchy of lattice models, we take a modification

by O
Am = ,
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and define the auxiliary Lax operators

VM =V, + Am, m>0. (27)
Through a direct calculation, we can have
0 0
EVM)U — uvim =
(V) ~s(a) — an)

C 1—I’b 1
m-+ m+ Y

which is consistent witiJ; . Then for allm > 0, we introduce the following
auxiliary spectral problems associated with the spectral problem (22):

o, = VIMy, m=o. (28)
The compatibility conditions of Egs. (22) and (28) are
Uy, = (EMV™)U —uv™, m >0, (29)
which give rise to the following hierarchy of lattice models
Mty = Cms1 — Omi1, M>0, (30a)
S, = —s(@® —am), m=>0. (30b)
These models can be rewritten as
am+1
= <;> = Cn:+1 » m=0, (31)
tm e

r

whereJ; is defined by (7a). Obviously, it follows from the recursion relation for
the lattice functionsy,,, by, andc,, that the following recursion relation

8m+1 am
r r
=V , m>1
Cm+1 Cm -
r r
holds. Therefore, we have
am+1 a
r m r m
= = = >
N Cmit NS % ¥ fg= Xy, m>0.
r r

and so the lattice models (31) are just the positive lattice hierarchy (16). This
implies that the positive lattice hierarchy (16) is local and it has the discrete zero
curvature representations (29). Moreover, the Lax operatbtsof the positive
hierarchy (16) only have positive powers of the spectral parameter
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In order to present the discrete zero curvature representations for the negative
lattice hierarchy (17), we consider the stationary discrete zero curvature equation

(ET2)U —UT, =0, (32)

wherel', = (A B

c —A) with A, B, andC being chosen as

o0 o0 o0
A= Z A2 B = Z BnA2™l C= Z CpA2m-1,
m=0 m=0 m=0

Similarly, from (32), we can have the initial relation
B" =0, Co=0, AY —A;=0,

and the recursion relation:

rBY —Cn=0, m>0,

sBY; + BY + (An+ AP) =0, m=0,

s(AD | — Anit) + (A — Ay) + By —CH, =0, m=>0. (33)
We choose the initial data satisfying the above initial relation:

1
Ao = % Bo = 0.

Then, the stationary discrete zero curvature equation (32) has a unique sblution
determined by (33). For example, we have

r 1 r
A1=@: Blzﬁ, C1=§,
rr@ rr(=1 r2 r r
A= — - - - - :
2 s2sMs(-1) S(S(fl))25(72) SZ(S(—l))z s?s(-1) S(S(fl))z
1 r r(=9
Bo = — D 2 2 J
S s(s(*l)) (s(*l)) s(=2)
r r2 rr®
Co=—— — oz —

SZ SZs(fl) SZs(l) :
Similarly, from (32), we can know (Tu, 1990) that 1)tr(F'2‘) = Oforallk > 1.

In particular, this tells us that ré) = 2(A? + BC) is a constant, and let us say
y». Then, we obtain a recursion relation 8,

m+1

m
1
Anii=Y AAniti+ ) BBuiwz—>y, m>1

i=1 i=1 2
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This relation, together with the first two recursion relations in (33), implies through
the mathematical induction that all lattice functioAg, Bm, Cn; m > 1, are lo-
cal, and they are just difference rational functions in the two dependent variables
r ands.

Upon defining

m m
Z A )L—Zm+2i Z BiA_2m+2i_l
i i=0

Wn=@"T)_=| . " , m>0, (34)
Cp2m2-1 A 322
we can have
0 —sBY
E(Wm)U — UW,, = 1 .
m m (SCm+]_ _(AgTJ]-) - Am))\.

To present the associated hierarchy of lattice models, we choose a modification

0. — S<71)Bm+1+A,(1‘,71) 0
m — O Am 1

and introduce

Wi = W, + ©n, m> 0. (35)
A direct computation leads to
(EWM)U — uwi™
0 0
= s(AD — Ay |

SCns1 + rAY — VB — rACD -

which s consistent withl; . Then for allm > 0, we further introduce the following
auxiliary spectral problems associated with the spectral problem (22):

o, = WMy, m>o0. (36)
Obviously, the compatibility conditions of Eqgs. (22) and (36) read as
Uy, = (EW™)U —uwW™, m >0, (37)
which give rise to the following hierarchy of lattice models
r, = SCny1 4+ AL —rsEYB, 1 —rACY = —C, 4+ 1B,,, m=>0, (38a)
S, = S(AD — Ay) = —(AD | — Ay q) =B +CP®, m=>o0. (38b)
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These models (38) can be rewritten as

Am
Uy, = ' =J T m >0 (39)
tm - S t - 2 B Cm+1 1 - )
r
whereJ, is defined by (7b). Similarly, we can have the recursion relation
_Am _Ana
r _1 r
=w , m>1,
G ~Cnm
r r
which leads to
_Am e
r _ r _
J =gy " =LY "go=Ym, mM>0,
2 B Cins1 2 _g 2 Jo m =
r r

and so the lattice models (39) are just the negative lattice hierarchy (17). This
implies that the negative lattice hierarchy (17) is local and it has the discrete zero
curvature representations (37). Moreover, the Lax oper&s¥s of the negative
hierarchy only have negative powers of the spectral pararheter

4. CONCLUSIONS AND REMARKS

Two hierarchies of nonlinear bi-Hamiltonian integrable lattice models have
been constructed from a difference Hamiltonian operator involving two arbitrary
constants. All lattice models in the resulting positive and negative hierarchies have
been proved to be local and to possess infinitely many commuting symmetries and
infinitely many commuting conserved functionals, which indicates that they are
allintegrable in the Liouville sense (Tu, 1990). Two examples among the resulting
integrable models are

gy =r(s—s)+r(rV —r®), s =rs—rWs
and
o r @ r
W=y g ¥TO@
The first one is from the positive hierarchy; and the second one, from the negative
hierarchy. Moreover, a kind of zero curvature representations associated with the
discrete spectral problem (22) has been proposed for the two lattice hierarchies.

This also provides evidence for integrability of the resulting lattice models by
the inverse scattering transfom. The Lax operators for the positive and negative
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hierarchies (16) and (17) correspond to the positive and negative power expansions
with respect to the spectral parameter, respectively. It has also been shown that the
integrable lattice models in the positive hierarchy are of polynomial type and the
integrable lattice models in the negative hierarchy are of rational type.

Compared with the Ablowitz-Ladik hierarchy (say, see Zeng and Rauch-
Wojciechowski, 1995) and the Toda hierarchy (say, see Ma and Fuchssteiner,
1999), the complexity of the lattice hierarchies (16) and (17) should lie between
their complexities. Like the Ablowitz-Ladik hierarchy, the discrete spectral prob-
lem for (16) and (17) involves the positive and negative powers of the spectral
parameter simultaneously, which leads to the existence of two lattice soliton hi-
erarchies. But the lattice hierarchies (16) and (17) have simple bi-Hamiltonian
structures like the Toda hierarchy. The Ablowitz-Ladik hierarchy has the higher-
degree nonlinearity in the second Hamiltonian operator (see Zeng and Rauch-
Wojciechowski, 1995), whose bi-Hamiltonian property seems not to have strictly
proved yet.

Other integrable properties of the lattice hierarchies (16) and (17) are in-
teresting as well. Are there anyaBKlund transformation and soliton solutions?
What are master symmetries amefunctions? It is particularly interesting to find
soliton, positon, negaton, and complexiton solutions to the above two typical in-
tegrable models. The resulting Hamiltonian operator (6) may also contain other
hierarchies of integrable lattice models. The arbitrariness of two constants brings
choices to present integrable lattice models. The higher-order matrix generaliza-
tion of the Hamiltonian operator (6) and the combination of the Hamiltonian
operator (6) with constant coefficient matrix operators must be good candidates
which lead to different Hamiltonian pairs in constructing integrable lattice mod-
els (see Tu and Ma, 1992, and Ma, 1990, for examples in the continuous case).
We hope that there will be answers to these questions and we love to have more
fishes.
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APPENDIX. THE PROOF OF THE JACOBI IDENTITY
We would like to give a concrete checking of the Jacobi identity
(J'(W)[If]g, hy + Cycle(f,g,h) =0
for the Hamiltonian operator defined by (6). Assume that

f= (fl(nv t)a fZ(n1 t))Tv g= (gl(nv t), gZ(nv t))T= h= (hl(n1 t)a hZ(n! t))T
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are three arbitrary functions, which are required to be rapidly vanishing at the infin-
ity. We combine terms on the left side of the Jacobiidentity, i.€.Jitu)[Jflg, h) +
Cycle(f, g, h), containinga?, 82, andap, respectively. Through a laborious but
straightforward computation, we can find that the coefficients?of?, andap

read as

> Irfagohy — r(E7t f2)gohy — rfo(E~go)hy + r(E f2)(E'g2)hy

nezZ
—1f201h2 + (EN)(Ef2)(Egn)hz + r (E71 f2)gih, — (Er) f2(Egn)hy
+rf(E g)he — r(E"Hf2)(E-g2)hz — (Er)(E f2)(Eg)h2
+ (Er) f2(Eg)h2](n) + Cycle(f, g, h),

> I (EN*(Ef)(Eq)(Ehy) — r(E~'r)(Er)(E~" f1)(Egi)(Ehy)

nezZ

+r(ENsH(Eq)(Ehy) —r(Er)(E™'s)(E* f2)(Equ)(Ehy)

+r (Er(E?r)(E* f1)(Equ)(Ehy) + r (Er)(E9)(E f2)(Ecn)(Ehy)

—r(Er) f(Eq)(Ehy) — r(Er)sh(Eq)(Ehy) — r*(E~'r) fy(E'ay)

x (E~hy) +r(Er)(E7?r)(E 2 f1)(E ) (E'hy)
—r(ETIN)(ETS)(ET R)(Eg)(E~ h) + 1 (ET)(E?S)(E72 1)

x (E7*g1)(E~*hy) — r(Er)(E'r)(Ef)(E " gu)(Ehy) + 1 (E7'r)?

x (E7H f)(E " gn)(E thy) — r(E7'r)sR(E ) (E*hy) + r(E"'r)(E's)
x (E7H 2)(E'g0)(E~thy) — r®sfigohy + 1 (Er)s(E f1)gahy

+1 (ENS(E f1)gzhy — r(E7'r)s(E™* f1)gahy + rs® fagohy

—rs(E7's)(E™* f)gohy — r(Er)(ET'S)(E f1)(E'g2)(Ehy)
+T(E"'r)(ETS)(E f1)(ET'g2)(E"hy) — rS(E™'s) f(Eg2)(E*hy)
+r(E'9)XE T f)(E T g)(E " hy) + 1 (Er)(ET'S)(E T )

x (E7'g)(E"*hy) — r*(E™'s) fy(E"*g2)(E *hy) — r(Er)s(E fr)gihz
+r(E7'r)s(E™* f1)gihs — rs? fog:hp + rs(E 1) (E* f2)gihs + r2sfigihy
—r(Ens(E f1)gihz + (Er)(E?r)s(E* f1)(Egr)(Ehy) — r (Er)sfy(Eqy)(Ehy)
+ (ENS(ES)(E f)(Eqr)(Ehy) — (Er)s® f2(Eqr)(Ehy)
—r(Er)sh(Eq)(Ehy) + (Er)*s(E fi)(Eq)(Ehp)](n) + Cycle (f, g, h),
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and
D Ir(Er)(E " f2)(Eguhy — 1 (Er) f2(Egh)hs — 1 (Er)(E f2)(Egr)hs

nez
+1(Er) fa(Egu)hy +r(E7'r) f2(E" ga)hs — r(E7r)(E~* f2)(Egn)hy
—r(E7'r)(E" f2)(E " gu)hy — r(E7'r)(E"? f2)(E gy
—r(Er)(Ef)gohy + r(E7r)(E™* f1)g2hy — rsfagzhy
+1(E'S)(E~* f2)g2hy — rsfagohy + rs(E7* fo)gohy + 1 figohy
—r(Er)(Ef1)gz2hy — r?(E™* f2)gzhs + 1 (Er)(E f2) g2y
+1(En(Ef)(E go)hs +rsf(E7 go)hy — r(E7r)(E 7 f1)(E g2y
—r(E7'S)(E" f2)(E~*g)hy + r (E7's) fo(E'gp)hy — 1 (E™1s)
x (E f2)(E7*g2)hy — r(E7'r)(E~H f1)(E o)y + r? f1(Eg2)hs
+1(E7)(E?f2)(Etg)hy — r2 fo(Eg2)hy + 1 (Er)(E f)gihz
—r(E7'r)(E7 f)auhs + rsfogih, — r(ET'S)(ET f2)gihs + rsfogihs
—rs(E~* f2)g1hy — r? figihy + r(Er)(Ef1)gihs + r2(E7 f5)gihy
—r(Er)(Ef)ah, — (Er)(Er)*(E* f1)(Eguhz + 1 (Er) fy(Eg)hz
—(En(ES)(ER)(Edn)hz + (Er)s(Eg)hz — (Er)s(Ef2)(Etn)h,
+(Er)sfy(Eguh, + 1 (Er) fy(Eg)hz — (Er)*(E f)(Egnhy
—r(EN(E f)(Eghz + (EN*(Ef)(Egr)hz — r (Er)(Ef)(E'go)h,
+r(E"r)(EH 1) (E T go)hs — rsf(E " go)hy
+r(ET'S)(E7 f2)(E " go)ha + (Er)(E?r)(E? f1)(Eg)hs
—r(Er) f(Eg)hz + (Er)(Es)(E f2)(Eg)hz — (Er)s(Eg)h](n)
+ Cycle(f, g, h),

respectively. By a careful checking, we see that these three sums are all equal to
zero. Therefore, the Jacobi identity for the Hamiltonian operator (6) holds.
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